
Multi-Agent Deep Reinforcement Learning in a
Three-Species Predator-Prey Ecosystem
Using Multi-Agent Deep Reinforcement Learning to train agents in a three-
species predator-prey simulated ecosystem and exploring the dynamics
with respect to the Lotka-Volterra model of population dynamics.

Master’s thesis in Data Science and Artificial Intelligence

TOBIAS KARLSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021





Master’s thesis 2021

Multi-Agent Deep Reinforcement Learning in a
Three-Species Predator-Prey Ecosystem

Using Multi-Agent Deep Reinforcement Learning to train agents in a
three-species predator-prey simulated ecosystem and exploring the
dynamics with respect to the Lotka-Volterra model of population

dynamics.

TOBIAS KARLSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021



A Three Species predator prey system with Multi-Agent Reinforcement Learning
Using Multi-Agent Deep Reinforcement Learning to train agents in a three-species
predator-prey simulated ecosystem and exploring the dynamics with respect to the
Lotka-Volterra model of population dynamics.
TOBIAS KARLSSON

© TOBIAS KARLSSON, 2021.

Supervisor: Claes Strannegård, Department of Computer Science and Engineering
Examiner: Marina Axelson-Fisk, Department of Mathematical Sciences

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Three species predator prey ecosystem with grass, prey (deer) and predators
(wolves).

Typeset in LATEX
Gothenburg, Sweden 2021

iv



A Three Species predator prey system with Multi-Agent Reinforcement Learning
Using Multi-Agent Deep Reinforcement Learning to train agents in a three-species
predator-prey simulated ecosystem and exploring the dynamics with respect to the
Lotka-Volterra model of population dynamics.
Tobias Karlsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In computational biology, population dynamics in simulated ecosystems is one im-
portant topic. Standard mathematical tools of population dynamics such as systems
of differential equations are typically incapable of accounting for a variety of impor-
tant attributes, such as the intelligent and adaptive behavior of individual agents
in complex environments. Thus, they are often insufficient to simulate dynamics
in real-world ecosystems. In this thesis, a three-species predator-prey simulated
ecosystem was implemented in the Unity game engine. Agents in the ecosystem
were trained through multi-agent reinforcement learning. The population dynam-
ics were then analysed with respect to the Lotka-Volterra predator-prey equations
which are described by several parameters and assumptions regarding the responses
of the parameters to changing population densities. The responses of the parameters
were estimated through simulation experiments. It was found that the population
dynamics of an ecosystem with trained agents exhibited Lotka-Volterra cycles where
a random policy agent ecosystem failed to do so. Further, it was shown that the
observed responses of the parameters did not fulfill the Lotka-Volterra assumptions,
but rather showed properties that could be argued to be more realistic.
For the reinforcement learning, a reward system was introduced as the happiness
network, which incorporated both the external and internal state of the animat,
inspired by behavioral science of real-world animals. This reward system was shown
to perform better than a simple reward system with a positive reward for eating food
and a negative for dying, in some environments and was argued to have benefits in
more complex ecosystems.

Keywords: animats, multi-agent reinforcement learning, ecosystems, lotka-volterra,
predator-prey.
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1
Introduction

An animat was defined by Stuart Wilson as an artificial animal including a model
of homeostasis [1]. Homeostasis denotes the regulation of internal variables, such
as body temperature, pH, sodium level, potassium level, calcium level and blood
sugar level. He proposed the idea of creating artificial intelligence (AI) by modeling
animal behavior, the animat path to AI. The most prominent examples of agents
with general intelligence are humans which are special kind of animals, making the
animat path to AI a naturally interesting idea in the objective to develop artificial
general intelligence (AGI).

Reinforcement Learning (RL) is an area of machine learning where the behaviors
of agents are learnt through interaction with an environment. The area of RL has
seen massive research efforts in the last decade with outstanding results in several
different domains.

In simulated ecosystems, conventional mathematical tools are incapable of account-
ing for a variety of important attributes of the system, such as the intelligent and
adaptive behavior of individual agents in complex environments. Despite recent at-
tention in RL with its clear connection to modeling animal behavior, few studies
have been made in the domain of ecosystem modelling.

In this thesis, we explore whether real-world dynamical properties rooted in the
theory of the Lotka-Volterra (LV) predator-prey equations are being exhibited in
simulated ecosystems with animats learning through multi agent RL. More precisely,
we investigate the population dynamics in a three-species predator-prey system.
The dynamics of simulated predator-prey systems are governed by a combination
of the simulation parameters, such as the environmental and agent configurations,
and the decision making abilities. By estimating the LV parameter responses to
different environment configurations, we suggest how the simulated ecosystem may
show more realistic dynamics by challenging the assumptions made by the classical
LV model. Further, a reward system inspired by real life animals is incorporated.
This reward system, referred to as the happiness network, combines external stimuli
with internal homeostatic regulation.

By analysing the dynamics of an agent based simulated ecosystem with agents
trained by RL with conventional mathematical models of computational biology,
we hope to find similarities and differences between the two approaches which may
be useful in the process of taking ecosystem simulations to more realistic levels.
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1. Introduction

1.1 Background and related work
A vast amount of work has been put into analyzing the LV equations and their
different variants, both through the lens of mathematical analysis and numerical
simulations. The LV models are based on several assumptions and are determin-
istic. One of the assumptions are infinite population sizes. The fact that real
world ecosystems consist of finite populations with decision making of animals makes
them non-deterministic. This stochasticity is better captured in an individual based
model. Individual based models have been pointed out to play an increasingly im-
portant role in questions posed by complex ecological systems [2], where they also
paraphrased the well-known paper by Dobzhansky [3] "Nothing makes sense in ecol-
ogy except in the light of the individual". RL provides an intuitive framework to
train and simulate individual based agents with complex decision making systems
but well defined observation and action spaces.
Some researchers have been exploring the dynamics in two-species predator-prey
systems with agents trained through RL. In [4], the authors showed that by using
multi-agent reinforcement learning (MARL), they obtained cyclic dynamics. How-
ever, they used a random policy for the prey, which is not very realistic. As a further
step, [5], investigated several more complex predator-prey simulated ecosystem vari-
ants where the prey were also trained agents. In their simplest environment, they
showed that with an appropriate choice of parameters, they could obtain stable limit
cycles as predicted by the LV equations. When a mating mechanism was introduced,
where new animats were born due to inter-species meetings, they showed that they
could obtain quasi-cycles as expected from a stochastic predator-prey system where
the birth and death of individuals can be described as a stochastic process. Their
environment is an unbounded grid world, where the prey and predators can observe
a limited sized square around them, from a birds-eye-view1. The prey observed the
energy levels of the predators. At each timestep, the agents could move to a nearby
grid, and if a prey is within the hunting area of the predator, it got eaten up. The
authors used deep recurrent Q-learning [6], to take into account the fact that the
environment is a Partially Observable Markov Decision Process (POMDP), which
is described in section 2.1.2.
Research with MARL in predator-prey systems have been done on other aspects
as well. In [7], it was investigated whether group behaviors such as flocking and
cross-species symbiotic partnerships, which are often observed in nature, could also
be observed in a multi-species predator-prey system with agents trained through
MARL. This is, to my knowledge, the only time before this thesis that a three-
species predator-prey system have been explored with RL. Their simulations were
run in two different environments, a 2D grid world with agents in the magnitude
of thousands and a 3D game engine world with tens of agents. Each agent had a
radius which it could observe things within. They observe their own velocities as
well as the position of all other agents and their velocities. A policy network was
trained for each species and their results showed that there is both intra and cross
species coordination emerging, even with no explicit reward encouragement for these
to occur, but simply independently incentivized self interested agents.

1Viewing the surrounding as though it was a bird, watching from above.
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1. Introduction

In [8], they present a method to create a mapping between the parameters of a
simulated predator-prey system and the parameters of the LV model. This mapping
may be useful to compare simulation results to that of the deterministic LV model.
All the research for RL predator-prey systems mentioned above use a reward which
considers the animals response to external changes, such as giving a positive re-
ward for eating and a negative for dying. In [9], the authors suggest that this is
only one part of the reward system of animals. They suggest combining this with
the internal changes, referred to as homeostatic regulation, where each animal has
several homeostatic variables which it wants to keep at their optimal values. In
this thesis, we incorporate a reward system inspired by this, called the happiness
network, where the reward at each step is the difference in happiness. The happi-
ness is a combination of internal homeostatic regulation and external stimuli, such
as the smell of food. Further, in contrast to the referenced predator-prey MARL
systems mentioned above, we use observations resembling vision and smell from a
first person perspective to make it more realistic.
An increasingly popular framework to train RL agents is to use the Unity game
engine and the machine learning toolkit ML-agents 2. This makes it easier to build
visually rich environments to train agents with RL. Visually rich environments en-
ables qualitative evaluation of the agents to a larger extent. One sidegoal of this
thesis is to be part of providing a framework in Unity for future research of simulated
ecosystems.

1.2 Aims and limitations
In this thesis, we begin by exploring whether we can obtain intelligent behaviors in a
simulated predator-prey system with agents trained in a MARL framework and the
Proximal Policy Optimization (PPO) RL algorithm. The intelligence is explored by
investigating the survival capabilities of our agents compared with random policy
agents. Further, we explore whether the simulated predator-prey systems exhibit
cyclic population dynamics similar to that described by the LV equations. The LV
model is based on several assumptions, such as the parameter responses to changing
population densities. Through simulation experiments similar to that of [8], the
parameter responses in the simulated ecosystem are estimated and compared with
the assumptions.
The capability of the happiness network is evaluated by comparing the lifetime of
agents trained with it in comparison to a more classic external reward system.
This thesis will not compare the performance of different RL algorithms. The reason
for this, is mainly due to the computational cost of training a large multi agent
system. This is also the reason for not experimenting with different hyperparameters
for the training process. Rather, these are selected in accordance with common
recommendations3.

2https://github.com/Unity-Technologies/ml-agents
3The default configuration of the PPO implementation in stable-baselines3.
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2
Theory

This section begins with discussing the idea of RL from a broader perspective and
where it fits in among other machine learning paradigms. It is followed by a pre-
sentation of the Markov Decision Process formulation of a RL problem, which will
lead to the definition of a Partially Observable Markov Decision Process. Then
some main ideas of Multi Agent Reinforcement Learning (MARL) and the idea of
centralized learning, decentralized execution is introduced. This will be followed by
going through the inner workings of the Proximal Policy Optimization algorithm
that is utilized in this thesis. After that, the Lotka-Volterra three-species predator
prey model is presented. By the end of the section one can find a presentation of
how the ecosystems are formalized in order to be described more precisely.

2.1 Reinforcement Learning
RL is one of the three machine learning paradigms. In RL, there is an agent which
we want to take actions in such a way that some goal or goals are fulfilled. The agent
observes the environment through some senses and takes an action that will maxi-
mize its cumulative reward. The rewards that is given to the agent is constructed
to try to make the agent behave in a way that satisfy our goals, similar to how a
pet trainer gives candy to its pet when it acts in wished for manner.
In supervised learning, there is a set of examples grouped with a label provided by
an external supervisor. This label is the correct "action" given the corresponding
example. The task of learning in this setting then is to extrapolate from these exam-
ples such that the actions are correct when new examples are presented. However,
when learning through interaction, it has limitations due to the impracticalities as-
sociated with obtaining this training set of desired behavior that covers the whole
observation space of the agent.
Using usupervised learning, we are not limited by an external supervisor. However,
in this task, the goal is usually to try to find structure hidden in this unlabeled data.
RL is about maximizing cumulative reward rather than finding the hidden structure,
even though this second task might be important in order to achieve the first. Thus,
RL is considered its own machine learning paradigm. The exploration-exploitation
trade-off is a inherent challenge of RL. The agent, which wants to collect as much
reward as possible needs to both exploit taking actions that it has discovered to
be good, but also explore actions which it is unsure about, otherwise it might miss
out on the very best actions. On the other hand, if it always selects to try out new
things, it misses out on a lot of reward. This is the trade-off and every RL algorithm

5



2. Theory

needs to consider how to deal with it.
RL algorithms are usually one of two types, model-based or model-free, even though
hybrids of the two which utilizes the strengths of both algorithms are beginning to
emerge lately [10]. Briefly, in model-based methods, the agent selects its action by
using its model predictions of next state and reward in order to calculate optimal
actions. In model-free, the agent does not try to predict future states, rather it
samples from its experiences. Selecting actions that has historically been good given
a particular state.
One of the things that makes RL exciting is that it resembles how humans and
animals learn and many algorithms are inspired by biological learning systems [11].
Thus, in the objective of achieving more general artificial intelligence, RL seems to
be a logical and promising approach [12].

2.1.1 The Markov decision problem formulation
A RL problem that satisfies the Markov property is called a Markov decision process
(MDP). Given a set of possible outcomes Ω for a random variable X, the Markov
property is satisfied whenever

Pr(Xn = xn | Xn−1, . . . , X0 = x0) = Pr(Xn = xn | Xn−1 = xn−1) (2.1)

[13]. This assumption is used for many RL problems since it provides a clean
mathematical framework and are often approximately true. A MDP is a 4-tuple
(S,A,Pa,Ra) with

Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) (2.2)

being the probability that action a in state s at time t will take us to state s′ at
time t+ 1.

Ra(s, s′) = E[Pr(rt+1 | st+1 = s′, st = s, at = a)] (2.3)

being the expected reward r at time t + 1 after transitioning from s to s′ through
action a at time t [14]. A finite part of a MDP depicted as a decision network can be
seen in fig. 2.1. How good is a particular state? This question is very important in
RL and particularly for value-based methods, such as the classic Q-learning method
[15]. The value function is the expected future reward by following a policy π. A
policy is a probability distribution over every action in a particular state. The value
of a state s under a policy π is denoted by Vπ(s) and is defined as

Vπ(s) = Eπ[
∞∑
k=0

γkRat(st+k, st+k+1)] (2.4)

and we call it the state-value function for policy π. γ is the discount factor satisfying
0 ≤ γ ≤ 1 which gives rewards in the near future larger weights. Similar to the state-
value function, the action-value function for policy π is defined as

Qπ(s, a) = Eπ[
∞∑
k=0

γkRat(st, st+1) | at = a] (2.5)

6



2. Theory

Figure 2.1: A finite part of a MDP depicted as a decision network.

which is the expected reward obtained by taking action a at time t and thereafter
following the policy π [16].
Policy-based methods tries to improve the policy directly. We search for better
policies in a policy space, which is usually approximated through some function
approximator, such as neural networks.

π(· | s) ≈ πθ(· | s)

By parameterizing the function, gradient methods can be applied to take a step in
the direction which improves the long-term reward of the policy. This is called a
policy gradient method. In this thesis, Proximal Policy Optimization (PPO) is used
an described in section 2.1.6, which is a policy-based method.

2.1.2 Partially Observable Markov Decision Process
A generalisation of a MDP is a Partially Observable MDP (POMDP). A POMDP
is a 6-tuple (S,A,Pa,Ra,Ω,Oa). Where, the 4-tuple from an MDP is extended with
Ω as the set of possible observations and O(o | s′, a) as the conditional observation
probability given the state s′ and action a.

Oa(o, s′) = Pr(ot+1 = o | st+1 = s′, at = a) (2.6)

In a POMDP, The dynamics of the system is governed by a MDP, but the com-
plete state of the system can not be observed by an agent. At each timestep, the
environment is in some state s ∈ S and the agent takes an action a ∈ A. Now
the environment transitions to a new state s′ with probability Pa(s′, s). The agent
now makes a new observation o ∈ Ω of the updated environment, drawn from the
distribution Oa(o, s′). A finite part of a POMDP depicted as a decision network can
be seen in fig. 2.2.

2.1.3 Multi-agent reinforcement learning
Many RL applications involve the participation of more than one agent, thus falling
under the domain of Multi-Agent Reinforcement Learning (MARL). Even though

7



2. Theory

Figure 2.2: A finite part of a POMDP depicted as a decision network.

there are many successful empirical results, theoretical foundations are lacking, as
concluded in [17]. MARL problems usually have a number of common challenges.
The first being the fact that the objectives of the agents are not necessarily aligned,
making the learning goals multi-dimensional. Secondly, the environment of an agent
is non-stationary as all agents concurrently changes their policies in order to their
individual interests. Additionally, the joint action space grows exponentially with
the number of agents, possibly causing issues when it comes to scalability, referred to
as the combinatorial nature of MARL in [18]. Finally, the structure of information
in MARL is more complicated as the individual agents has limited access to others
observations, which may lead to sub-optimal local policies. All these issues have not
seen a lack of effort in trying to be addressed. However, much is yet to be conveyed
when it comes to rigorous theoretical analyses of MARL.

2.1.4 Centralized learning, decentralized execution

Probably the most common learning scheme in MARL, is to use centralized learning
with decentralized execution. This is when multiple agents observe and acts in an
environment without explicit communication in between each other, no information
is explicitly shared between them. But, the agents have a shared policy which is
trained collectively. This can be put in contrast with a decentralized setting with
networked agents, where agents share some information between them but there
is no central controller, or a fully decentralized setting, where there is no central
controller nor any information sharing between agents. These three options are
illustrated from left to right in fig. 2.3. One of the reasons for using centralized
learning when the agents are equal, is to speed up the training process. During each
model update, a larger number of experience trajectories are sent to the model,
compared to the option of assigning one individual model per agent. However, if
the agents are non-equal, they can not share a brain.

8



2. Theory

Figure 2.3: Three different information structures of MARL. (a) Centralized learn-
ing with decentralized execution. (b) Fully decentralized setting. (c) Decentralized
setting with networked agents.

2.1.5 Decentralized POMDP
A class of challenging, yet very common, MARL problems are those where the en-
vironment is only partially observable to an agent (POMDPs). Theoretical analysis
of these settings are yet in its infancy, compared with the MDP setting [17]. When
the centralized learning, decentralized execution scheme is used in an POMDP, it is
referred to as a Dec-POMDP [19]. A Dec-POMDP is formally defined as a 9-tuple
(S,A,Pa,Ra,Ω,Oa,D, h, b0). Here, we have further extended the POMDP defined
in section 2.1.2 with the set of agents D, b0 and h. Here, b0 is the initial state
distribution of the environment and h the horizon of the problem. The horizon de-
fines how many steps ahead that an agent tries to maximize its expected cumulative
reward when deciding which action to take. All the sets S,A and Ω are the joint
sets of the agents. In a Dec-POMDP, the key idea is that the local observations of
all agents are sent to a central controller, which returns a joint reward. The policy
might or might not be shared among the agents. This way, the Dec-POMDP setting
makes it possible to train a common policy through the local observations of the
agents. The shared policy is possible since all the agents which share the central
controller are equal.

2.1.6 Proximal Policy Optimisation
Compared with value-based methods, policy-based methods have better convergence
guarantees [20] [21]. Proximal policy optimisation (PPO) [22] is a state-of-the-art
policy-based RL algorithm which solves the convergence problem of some policy
gradient methods. It relaxes a hard constraint on the second-order derivative matrix
and imposes a penalty in the objective function. This way one can use a first-order
optimizer like gradient descent which is less computationally demanding. Given that
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we have parameterized a policy function πθ and a value function Vθ with a shared
parameter θ. And with Ât as the estimated advantage function at time t of

At(st, at) = Q(st, at)− V (st). (2.7)

and a probability ratio of two successive policies

rt(θ) = πθ(at | st)
πθold(at | st)

. (2.8)

The surrogate objective function used in PPO with a clipped objective, is given by

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (2.9)

with ε as a hyperparameter. Thus, if

rt(θ) 6∈ [1− ε, 1 + ε] (2.10)

the estimated advantage function will be clipped. This way the incentive is removed
to change a policy to much. The resulting objective function will be the lower (to
obtain a pessimistic bound) of the clipped and unclipped. Using this minimisation,
we only select the change in probability ratio when it actually makes the objective
worse. When using a neural network architecutre, where the policy and value func-
tions shares parameter θ, the authors recommend adding a value function error term
to the surrogate objective, so that we also try to improve the approximation of the
value function. Further, they recommend adding an entropy bonus, to encourage
exploration. This way, we end up with the following objective function,

L(θ) = Êt[LCLIP(θ)− c1(Vθ(st)− V targ
t )2 + c2S[πθ](st)] (2.11)

with c1, c2 being coefficients, S an entropy bonus and V targ
t as the target value

function given by
V targ
t = rt + Vθ(st+1) (2.12)

Now that we know the loss function being used, what does the training algorithm
look like? Each iteration, all N actors collects T timesteps of data, then we use this
NT timesteps of data to find the best parameter θ by maximizing the surrogate
objective function L(θ) through Steepest Gradient Ascent or Adam Optimizer, for
K epochs. Next iteration we will use this better parameter θ for the parameterized
policy πθ.
Algorithm 1: PPO, Actor-Critic style
Input: Initial policy πθ0

for i = 1, 2, . . . do
for actor = 1, 2, . . . , N do

Run policy πθold for T steps;
Calculate advantage estimates from the trajectories Â1, . . . , ÂT ;

end
Optimize the surrogate objective function L(θ) with K epochs and a batch
size of NT ;
θold ← θ;

end
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In this algorithm, the advantage estimate can not look further than these T timesteps.
Thus, the advantage estimate at time t is given by the difference of the value func-
tion at time t, with how much discounted reward we actually obtained in the interval
[t, T ] plus the discounted value at time T of the state we ended up in.

Ât = −V (st) + rt + γrt+1 + · · ·+ γT−t−1rT−1 + γT−tV (sT ) (2.13)

2.2 Lotka-Volterra Predator-Prey equations
The Lotka-Volterra predator-prey equations were independently proposed by Alfred
J. Lotka in 1910 [23] and Vito Volterra in 1926 [24]. The equations are a pair of first
order non-linear differential equations which describes the population dynamics of
predator-prey systems. Since then, the model has been extended in various forms to
in different ways consider the assumptions of the model which is often not realizable
in real world predator prey systems. The model has also been extended to consider
more than two species [25]. We will consider a three-species model consisting of a
grass-prey-predator food chain. We put a logistic growth on the grass to incorporate
the fact that our ecosystem is finite and this put an upper bound on the amount
of grass that can grow within it. With x(t), y(t) and z(t) as the grass, prey and
predator population size at time t and a, b, c, d, e, f, g, xc ≥ 0.

dx

dt
= a(1− x

xc
)x− bxy (2.14a)

dy

dt
= −cy + dxy − eyz (2.14b)

dz

dt
= −fz + gyz (2.14c)

The parameters are described as
• a, the growth rate of grass.
• b, the rate at which a prey eat the grass.
• c, the rate at which the prey starve in the absence of grass to eat.
• d, the growth rate of prey per grass.
• e, the rate at which a predator eat prey.
• f , the rate at which the predators starve in the absence of prey to eat.
• g, the growth rate of predators per prey.
• xc, the grass carrying capacity of the ecosystem

Different choices of the parameters will yield different population dynamics and the
analysis of this set of differential equations are a vast topic in itself. What we need
to know for this thesis is that for some parameter configurations, the solution to
these analytic solutions are cyclic. In fig. 2.4 an example of cyclic dynamics in a
three-species predator prey system is shown. The three-species LV equations are
based on several unrealistic assumptions.

1. The environment is constant and genetic adaptation is not assumed to be
negligible.

2. Predators and prey have an infinite appetite.

11
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3. The population sizes are infinite and continuous.

4. The grass growth rate is only dependent on the grass population size, but
converges as the carrying capacity of the environment is reached (a(1− x

xc
)x).

5. The grass is eaten by the prey in proportion to the prey population size (the
−bxy term).

6. The prey and predator populations growth rate increases linearly with the
food available (the dxy and gyz terms).

7. The prey can die from natural causes similar to the predators (the −cy term),
and through predation which is proportional to the predator population (the
−eyz term).

8. The predators can only die from natural causes (the −fz term), and it is not
dependent on the amount of food available.

Variants of the equations have been developed, which in different ways consider
more realistic assumptions. Two major assumptions that every model needs to
consider is the numerical and functional response, concepts first introduced by M.
E. Solomon in [26]. The numerical response is the change in population density as
a function of the food density of that species (assumption 6). It may be divided
into two mechanisms, the demographic and aggregational responses. The first is
the change in the reproduction due to changes in food density. The most simple
model of prey and predator’s demographic response is based on the assumption that
reproduction rate is linearly proportional to the food. The aggregational response
is the change in predator population due to immigration into an area with increased
prey population and is not considered in the LV model above. The functional
response is the predation rate as a function of food density, it is also assumed to
have a linear response in the classic LV model (assumption 5 and 7). One of the
most popular variations of the LV equations is the Rosenzweig–MacArthur model
[27]. Here, they introduce a non-linear Holling type II functional response [28]. For
this type of response, prey mortality from predation declines with prey density.

In fig. 2.5, the populations sizes of lynx and hare were reported on an annual basis in
the Canadian Rockies during a 90 year period and analysed by [29]. As can be seen,
it shows some cyclic dynamics but has some significant differences when compared
with the analytic model.
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Figure 2.4: Example of a three-species predator prey system with cyclic dynamics.
Here x0 = 0.5, y0 = 1, z0 = 2 and a = b = c = d = e = f = g = 1, xc = 1000.

Figure 2.5: Example of real world data for a 2-species predator prey system.

2.3 Simulated Ecosystems
In this section, the mathematical formulation that will be used to describe our
ecosystems is presented. The reward system denoted the happiness network is then
introduced.

2.3.1 Formulation of an ecosystem
Similar to how they did in [30], we make a number of definitions that will be useful
in order to formalize an ecosystem.
Definition 1. We define an ecosystem as a pair (A,E) with A being the set of
animats and E the environment consisting of all non-animat objects which can be
divided into subsets if needed.
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Definition 2. An animat is a pair (G,P) with G called the genotype and P the
phenotype.
The genotype is a property that is fixed throughout the lifetime while the phenotype
is used to describe the part of the animat that is changing throughout the lifetime.
Definition 3. A genotype consists of the following:
(i) A set of actions A.
(ii) A set of sensors Z through which a set of objects Bz for z ∈ Z can be observed.
(iii) A set of events that will lead to death D.
(iv) A set of physical properties F .
(v) A set of homeostatic variables H. Each homeostatic variable having a set of

objects Bh which through a set of events Eo can alter the homeostatic variable.
(vi) A genotype policy network πg(o) which is a probability distribution over actions

a ∈ A for each observation o ∈ O.
(vii) A reward function Ra(s, s′).
Definition 4. A phenotype consists of the following:
(i) A set of observations O dependent on the sensors, homeostatic variables and

the ecosystem in which the animat lives.
(ii) An experience trajectory Exp = [(o1, a1, r1), . . . , (ot−1, at−1, rt−1)].
(iii) A phenotype policy network πp(o) which is a probability distribution over ac-

tions a ∈ A for each possible observation o ∈ O.

The policy network in the genotype πg, is the policy that an animat inherits at
birth, while πp in the phenotype is what a particular individual has learnt through
its experience trajectory Exp by starting from πg at birth.

2.3.2 Happiness network
In this section, two different approaches to modelling behavioral adaption are de-
scribed and then we present the happiness network, which is an attempt to combine
the two.
Most reinforcement learning models which aims to imitate behavioral adaption in
animals, consider the animals response to external changes. This model assumes
that animals objectives are to select actions in a way that maximizes the reward
acquistion. That real world animals adapt to their environment by continuously
updating their estimates of state-values and the teaching signal is suggested to be
carried by the phasic activity of the midbrain dopamine neurons [31]. This signal is
projected onto the striatum, where stimulus-response associations are encoded.
Others approach the behavioral adaptation in animals by considering homeostatic
regulation. Here, the assumption is that in order to survive, a number of homeostatic
variables should not deviate too far from their optimal setpoints. In most animals,
there are many homeostatic variables such as body temperature, pH, sodium level,
potassium level, calcium level and blood sugar level. These all have to be kept
within a homeostatic range. If any of them are not within this range, the animal
will die. Thus, the behavioral adaption in animals is to response appropriately to
perturbations of these homeostatic variables. These models are called Negative-
Feedback models of homeostatic regulation [32]. That these models play a vital
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role for some behavioral adaptations is argued to be indisputable, a number of
criticism have been raised though. For example, after some learning trials, rats
that were trained to run down an alley for intragastic feeding of milk, did not show
any motivation to do so, while rats that were trained with normal drinking of milk
quickly showed this motivation.
Both of these approaches both have their shortcomings. The first one, not taking
into account the internal state of the animal and the second one not taking into
consideration that external stimuli is a strong reinforcing component in the process
of learning. Thus, efforts have been made to take a more unified approach [9]. In
this thesis, we also try to unify these two approaches by introducing the happiness
network.
The happiness network consists of a happiness function and a reward function which
takes the two most recent happiness function evaluations and returns a reward.
The happiness function of an animat takes an observation from its sensors and the
homeostatic variables as input and outputs an associated happiness. The happiness
function can be constructed in many ways, our approach aims to take the internal
state of the animat into account by making the animat less happy as homeostatic
variables deviate from their optimal setpoints. The external observatory data is
used to make the animat more happy when they make observations that are associ-
ated with events that bring the homeostatic variables closer to their setpoints. For
example, the smell of food makes the animat happy when it is hungry while the
smell of a predator makes it less happy. Let ot be the vector containing the n =| Z |
vector observations for each sensor at the current timestep t. The second term is
a summation over all sensors and the set of objects observable by the sensor. The
function fzb is then the associated happiness for sensor z and object b when making
observation ozt . For example, z being smell and b being food.

Happiness(ot) =
∑
i∈H

ln(1 + αhihit)
ln(1 + αhi) +

∑
z∈Z

∑
b∈Bz

fzb(ot)

with hi ∈ [0, 1] which has optimal value hi,∗ = 1. This way, any deviation from the
optimal homeostatic value decreases the happiness in an exponential way. The shape
of the exponential decay is determined by the parameter αhi . The motivation for
the happiness function is that the homeostatic function should change more rapidly
when a homeostatic variable is close to critical, while on the other hand, changes in
a homeostatic variable when we are close to the optimal value, doesn’t change the
homeostatic function by a large amount. For example, going from being thirsty to
almost die due to dehydration, gives a greater sense of urgency than going from very
well hydrated to slightly less so. This way, the animats obtain a greater reward for
satisfying homeostatic needs when these are close to critical, otherwise they will die.
In this work, we assume that all homeostatic variables are critical, meaning that if
the variable becomes zero, the animat dies.
Now that we have defined the happiness function, we move on to how the rewards are
constructed using the output from the former. The reward at the current timestep
is simply the difference in happiness compared with the previous timestep. Simple
and intuitive.

Ra(st−1, st) = Happinesst − Happinesst−1 (2.15)

15



2. Theory

Figure 2.6: The happiness network
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Methods

In this section, we will begin by describing how we do MARL in Unity. Then we
will continue by going through the setup of the different agents, how they observed
the environment and their reward functions. The different environment setups that
were evaluated will be described.

3.1 Reinforcement Learning in a Unity simulation
ML-agents is an open source project which enables training of agents within the
popular game engine Unity. In this thesis, we utilize part of ML-agents but with
our own implementation of the decision making part (referred to as the Python
Trainer). This is done in order to be able to customize the RL to a larger extent.
The Python Trainer uses the OpenAI gym interface 1 which has become somewhat
of a research standard in RL. We utilize implemented RL-algorithms from Stable
Baselines3 2.
The block diagram fig. 3.1 shows the flow of information from the environment to the
Python Trainer. The environment contains a number of agents, whose observations
are sent to its individual or shared behavior. The behavior can either perform
inference using an existing model, use some heuristic or be sent through the Unity
communicator via the Python API to the Python Trainer. The actions decided by
the trainer is then propagated the opposite way to the agents. We also use custom
sidechannels to obtain additional environment data and use tensorboard 3 to track
the training progress in real time.
The interaction between the environment and the agent with respect to the sensory
input, homeostatic variables, happiness network and policy network is displayed in
fig. 3.2.

3.2 Sensors
Two different sensors, vision and smell are used by the animats to make a partial
observation ot of the state st of the ecosystem. The idea of combining multiple
sensors is that vision may contain more useful information but may also be harder
to interpret due to the high dimensionality. Smell on the other hand is a preprocessed

1https://github.com/openai/gym
2https://github.com/DLR-RM/stable-baselines3
3https://github.com/tensorflow/tensorboard
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Figure 3.1: Block diagram for information flow between agents and the Python
Trainer, a centralized learning, decentralized execution is utilized.

Figure 3.2: The interaction between the environment and the agent.
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Figure 3.3: A wolf and its vision sensor, here observing the surrounding objects
within its observation radius.

observation of significantly fewer dimensions and thus possibly easier to interpret
for the animats. Further, smelling is not prohibited by obstructions. This way, we
hope that the two sensors complement each other.
Many real life mammals rely on vision. Using raw images as sensory input in RL
has some associated challanges. However, in Unity we can utilize the so called
RayPerceptionSensor. This sensor which we call vision, shoots a number of rays in
a desired direction and distance. If a ray hits an object it will report back the tag
of this object if the tag is within the set of observable objects that we have chosen.
The distance to the object is also registered as the ratio of the distance and the
maximum distance. For example, if a ray hits a food object, the animat knows that
it is a food object and we do not have to go through the hassle of first learning an
animat how a food object looks like. This is very convenient.
Given a set of objects that are observable through vision Bvision and a set of rays R
that together makes up the vision sensor, for each ray r ∈ R at timestep t, we will
obtain an observation

ort = [i1t , . . . , int , dt] (3.1)
with ibt indicating with a boolean whether the ray hit the object b ∈ Bvision. The
distance to the object dt is observed as a ratio of the maximum distance of the ray.
A complete vision observation at time t with is then

ovision
t = [o1

t ,o2
t , . . . ,o

|R|
t ].

The vision of the animats consists of 150 rays, evenly distributed at 360 degrees
around the animat, see fig. 3.3 for an example. Vision of real life animals is not 360
degrees, but they can usually rotate their head and this is an simplification of this.
The sensor for smelling works in a different way. An animal can sense the magnitude
of a particular smell if it is present. By moving its head it detects differences
in magnitude and thus a probable direction of the origin for the smell. We let
each animat have a set of smellable objects Bsmell. We make the assumption that
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an animat can find the magnitude mb
t which gives how strong the smell of object

b ∈ Bsmell is. The magnitude has the property 0 ≤ mb
t ≤ 1 with a value of 1 when

the smell in the olfactory sensor is at its maximum. The animat also observes the
relative angle φbt to this object. For each type of smell, the animat observes the smell
magnitude of the object with maximum magnitude as well as the relative angle to
this object. The magnitude is given by

mb
t = 1− dbt

dbmax
(3.2)

with db being the distance to the closest object of this smell and dbmax the maximum
distance which the smell of b can be scented. The observation for a particular smell
b ∈ Bsmell is then

obt = [mb
t , φ

b
t ] (3.3)

and a complete smell observation

osmell
t = [o1

t ,o2
t , . . . ,o

|Bsmell|
t ] (3.4)

In order to know its own internal state, the animat needs to also observe its home-
ostatic variables. At each time step it observes the | H | homeostatic variables.

ohomeostatic
t = [h1

t , h
2
t , . . . , h

|H|
t ] (3.5)

A common issue in RL, and many other machine learning tasks, is how to deal with
problems where a temporal memory might be helpful. For example, if an animat
observes some other animat, it can’t know in which direction the observed animat
is moving, using only the most recent sensor observation data. The way this is dealt
with in this implementation, is by stacking n consecutive observations. This way, a
complete observation at time t is

ot = [ovision
t−n ,osmell

t−n ,ohomeostatic
t−n , . . . ,ovision

t−1 ,osmell
t−1 ,ohomeostatic

t−1 ,ovision
t ,osmell

t ,ohomeostatic
t ]

(3.6)

3.3 Simulations
The simulations runs in two phases, the first one being the pretraining and the
second one, the dynamics simulation. During pretraining, the number of indiviudals
of predators and prey are fixed and if an agent dies, its episode ends and it is
respawned instantly. In contrast, during the dynamics simulation an animat is
removed permanently when it dies. The number of agents for each speciesis fixed
to (x = 100, y = 100, z = 50) in the pretraining phase.
The motivaton for this pretraining approach instead of starting the dynamics sim-
ulations with untrained behaviors is, in the context of biology, that animals are not
born with completely untrained brains. Rather, they are born with a large amount
of reflexes and decision-making encoded in the genetics. This way our pretraining
can be seen as the process of evolution shapes the baseline behavior of a particular
specie.
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With the pretrained models, the dynamics simulation can be initiated. The goal of
this simulation is to record the population dynamics. In this phase, each species
is still being trained and can thus adapt to the dynamics of the ecosystem. Each
species is prevented from going extinct by adding a new individual if the number of
animats of a species becomes zero, similar to how animals outside of the ecosystem
can migrate into it and how they did in [5]. This is one way to deal with the fact
that the LV model is continuous and the population density of a species can get
close to zero but never go extinct.

3.4 Ecosystems

Ecosystem objects

The ecosystem is a pair (A,E), with A being the set of animats and E the rest of
the environment. There are two type of animats in the environment.

A = {deer,wolf}

with the deer being a prey and the wolf a predator. The grass, which is a species
which dynamics we measure, is not an animat, but part of the environment. If there
were multiple types of plants or other non-animal organisms with more complex inner
workings, these could be divided into well defined sets with well defined properties.
However, since we only consider one type of grass which only property is the ability
to reproduce, we omit this to keep things more simple. The three species can be
seen in fig. 2.4. The other objects in the environment are the ground and the walls.
Thus,

E = {grass, ground,wall}

The ground is flat square area with an edge length of 200, bounded by impassable
walls. In fig. 3.5, the complete simulation environment is shown.

Actions

The set of actions are the same for both animats. At each decision step, the animat
selects a value for each of the two actions in the sets

A = {move, rotate}, move ∈ {0, 0.5, 1}vmax, rotate ∈ {−1, 1}θmax

with vmax being the maximum forward movement speed which is described by the
physical properties of the genotype and θmax the maximum rotation speed of the
animat which is also part of the genotype.

Policy networks

Each species j has a genotype policy network πjg which is obtained from the pre-
training. In the dynamics simulations, each animat starts with this genotype policy
networks, which is then altered during the lifetime and then referred to as the phe-
notype policy network πjp.

21



3. Methods

Figure 3.4: The three species in Unity, grass, a deer and a wolf. The red bars
above displays the current energy levels of the animat.

Figure 3.5: The simulation environment, the gameobjects of each specie glow in
different colors to easier be distinguishable when watching the simulations.
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Sensors

The set of sensors are, for both animats

Z = {vision, smell}

where the animats have a set of observable objects Bvision for their vision and a set
Bsmell which they can smell. Each animat can with their vision observe all animats
and objects. They can smell every other animat and the grass.

Bvision = {A,E}, Bsmell = {A, grass} (3.7)

Homeostatic variables

The homeostatic variable of the deer and the wolves are just their need for energy.

Hdeer = Hwolf = {energy}

with associated events

Eenergy = {eat,metabolism, predation}

Where the event of eating occurs when an animat collides with one of its eatable
objects. Metabolism is going on all the time, but at a higher rate during movement.
Predation is considered related to energy because the predator reduces the energy
level of the prey to zero in a collision and this is what leads to the death of the prey.
The set of objects associated with an event are specific for an animat type.

Bdeer
eat = {grass}, Bdeer

predation = {wolf}, Bwolf
eat = {deer} (3.8)

Death

Death occurs when any of the homeostatic variables become less than or equal to
zero.

D = {minhi∈H
ln(1 + Chi)
ln(1 + C) ≤ 0}, (3.9)

Physical configurations

The wolves are 20% faster than the deer. This is a design choice made in order to
compensate for the fact that hitting a moving target is hard, and this is what the
wolves have to do when they chase a deer. If they had a similar speed, situations
where a wolf chased a deer without getting any closer, frequently occurred. The
physical configuration of each species is given as a set

Fdeer = {αdeer
metabolism, α

deer
reproduction, age, dwolf

max, v
deer
max, θ

deer
max} (3.10)

Fwolf = {αwolf
metabolism, α

wolf
reproduction, age, dwolf

max, v
wolf
max, θ

wolf
max} (3.11)
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1.2vdeer
max = vwolf

max, θdeer
max = θwolf

max. (3.12)

The rate of energy decay εenergy depends on the metabolism parameter αmetabolism
and the choice of movement action by the animat. At each timestep, the base level
of metabolism is 0.0004. Thus, an animat which does not move and begins with
full energy level will consume all of it and die after 2500 time steps. However, if its
chooses to run at maximum speed until death, it will die after slightly more than
300 time steps.

αdeer
metabolism = αwolf

metabolism = 0.0004 (3.13)

εenergy =


αmetabolism, if move = 0
2αmetabolism, if move = 0.5
8αmetabolism, if move = 1

The reproduction probability αreproduction specifies the probability that an animat will
give birth to a child per time step. The grass also has a reproduction probability.
All species spawn the child to a random unoccupied location in the environment.
The reason that the reproduction probability of the wolves is lower is that they are
apex-predators, i.e not predated by any other species. Thus, if they begin to grow
faster than they die due to lack of prey, they will grow unboundedly even in the
absence of prey since they are not dying from predation.

αgrass
reproduction = 0.001, αdeer

reproduction = 0.001, αwolf
reproduction = 0.0008 (3.14)

The parameter dmax specifies the maximum distance at which the animat can ob-
serve, in other words, the range of the smell of vision sensors. The prey have a
larger observation range than the predators. This is to give the prey the possibility
of learning to avoid the predators before they are within the observable range of it.
In fig. 3.6, the observation radius of a wolf and a predator can be seen.

ddeer
max = 40, dwolf

max = 30 (3.15)

Happiness function

The first term of the happiness function in section 2.3.2

∑
i∈H

ln(1 + αhihit)
ln(1 + αhi) (3.16)

reduces to
ln(1 + αenergyenergy)

ln(1 + αenergy) (3.17)

with αenergy = 10. The smelling sensor is used for the second term in the happiness
function. Increasing happiness when the smell of eatable objects increases. Decreas-
ing happiness for increasing smell of predators. Further, the happiness dependence
of a particular smell depends on the homeostatic variable associated with this smell
hbt . For example, the smell of food makes the animat more happy when it is hungry.
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Figure 3.6: The simulation environment watched from above. The grass is green,
prey yellow and predators pink. The left circle displays the vision sensor of the prey
and the right, which is slightly smaller, that of a predator.
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This is not the case for the smell of predator though, this smell is equally repulsive
regardless of the homeostatic variables. The parameters αgoodsmell and αbadsmell are
happiness weights for the good and bad smells. We use αgoodsmell = αbadsmell = 0.01.

fsmell,b(ot) =

+αgoodsmellm
b
t(1− hbt), b ∈ Bsmell if b ∈ Beat

−αbadsmellm
b
t , b ∈ Bsmell if b ∈ Bpredation

.

A complement to the happiness function is used by giving a negative reward of −5
if the agent dies.

Mating

The mating mechanism is simplified and not based on two or more individuals
meeting and deciding to mate, but rather an asexual one which depends on the
population sizes. At each timestep and for each animat, we draw a uniformly random
number u ∼ U(0, 1) and if u < αreproduction, we add a new animat of this specie.

Grass

In accordance with eq. (2.14), each grass object has a probability of αgrass
reproduction(1−

x
xc

) to spawn a new grass object at a random location. The carrying capacity is
determined by experimentally finding how many grass objects that can exist in the
ecosystem before we can not find any free location to spawn a grass object to. We
find that xc ≈ 1000.

3.5 Parameter estimation
The choice of parameters in the simulation have a large impact on the dynamics. In
the LV equations, there are a number of parameters. The simulation parameters are
listed in table 3.1. Given a particular simulation configuration, we want to estimate
the LV parameters and their responses to changing population densities.
The parameters are estimated similar to how was done in [8]. The parameter a
is exactly equal to the parameter αgrass

reproduction. The parameter b is estimated by
measuring the average number of grass that a prey eats per timestep for a number
of fixed (x, y = 20, z = 0) configurations, varying the fixed amount of grass x in each
simulation. With k(t) as the number of grass eaten by the y prey at timestep t, an
estimation b̂ is found by taking the average number of grass eaten per timestep in
the T simulated timesteps divided by the grass density.

b̂ = 1
T

∑
t=1,2,...,T

k(t)
xy

. (3.18)

Same way an estimation of e is done by measuring the average number of preys
killed by predators per timestep for fixed (x = 50, y, z = 20), varying the number of
prey. With p(t) as the number of prey predated at timestep t by the z predators,

ê = 1
T

∑
t=1,2,...,T

p(t)
yz

. (3.19)
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Simulation parameter Description

αgrass
reproduction

reproduction probability per
individual per timestep

αprey
reproduction
αpredator

reproduction

αprey
metabolism

base level energy
consumption per timestep

αpredator
metabolism
vprey

max maximal speed
vpredator

max
θprey

max maximal angular speed
θpredator

max
πprey policy network
πpredator

E The simulation environment
size, objects, etc.

Table 3.1: The different simulation parameters which have an effect on the dy-
namics.

The parameters c and d are estimated by considering

r = −c+ dx (3.20)

as the aggregate growth rate of the prey in the absence of any predators

dy

dt
= ry (3.21)

Which is a differential equation with the solution

y(t) = y0e
rt. (3.22)

If we now measure the population size y(t) for different fixed values of x, we can find
the corresponding growth rate r by fitting the linear equation for the logarithmized
population size.

ln(y(t)) = ln(y0) + rt (3.23)

This way, we obtain (r, x) tuples which can be used to fit a linear equation for
eq. (3.20) which will give us the estimation of the constants c and d. Same way we
estimate f and g by considering the growth of predators for a fixed number of prey.
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Results

4.1 Lotka Volterra dynamics
In fig. 4.1, four population dynamics simulations of three-species predator-prey sys-
tems with equal parameter configurations and initial values (x0 = 10, y0 = 20, z0 =
40) were run. The population dynamics exhibits cycle properties. As the figure
shows, the simulations almost immediately diverges from each other due to their
stochastic nature. However, some properties are similar for the simulations, such as
the time period and average peak amplitude, displayed in table 4.1. In comparison,
the population dynamics for the same environment configuration with random pol-
icy agents does not exhibit limit cycles, as seen in fig. 4.2. In this case, the grass
grows quickly to near its carrying capacity, then it takes a long time before the prey
population starts to grow due to their incapacitates of finding food. A large prey
population can now coexist with the grass without swiping the environment clean
of grass, as the trained agents do. The predators never get a chance to grow since
the probability of successfully finding prey when selecting actions randomly, is too
low.
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Figure 4.1: Population dynamics simulations of three-species predator-prey sys-
tems with equal simulation parameters and initial conditions. The variation is ex-
plained by the stochasticity.
30



4. Results

Figure 4.2: Population dynamics when using random policy agents.

Simulation Species Amplitude Period
1 grass 638(203) 90(29)

prey 152(75) 94(25)
predators 51(58) 98(40)

2 grass 482(282) 90(27)
prey 142(34) 90(28)

predators 47(32) 120(53)
3 grass 423(235) 86(34)

prey 123(57) 96(34)
predators 25(16) 84(33)

4 grass 441(243) 74(16)
prey 129(57) 70(22)

predators 29(14) 68(33)

Table 4.1: Average peak amplitude and period length for the four simulations in
fig. 4.1. The standard deviation is given in the parentheses.
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4.2 Parameter estimation

One question we asked was whether an estimation of the parameters of the three-
species LV model could be reconstructed from our simulation results and how the
parameter estimations responded to changing population densities and thus, if the
assumptions of the model regarding the responses were satisfied in the simulations.
For the grass eating rate parameter b, which is the probability for a grass to be eaten
by a prey per alive prey in the environment, the assumption is that this should be
constant for different densities of grass, in other words, a linear functional response.
If there is a higher grass density, the prey will have a higher grass eating rate, but for
an individual grass its probability of being eaten remains the same. In fig. 4.3, this
seems to be an assumption that holds to some extent. The slopes of the cumulative
eating for the average prey in environments with different grass densities are similar
and the variation does not seem to be related to the changes in grass density. The
same measurements are made for e, the predation rates by predators in fig. 4.4. Here
there are some differences in the predation rates for the different prey densities. A
prey living in a higher prey density environment has a lower mortality rate than
those in the lower density environments. Thus, this assumption of the LV model
does not seem to hold in the simulation for this parameter.

The growth rate of the prey in the absence of predators rprey = −c+dx is estimated
by measuring the exponential growth rate for different fixed grass densities in fig. 4.5.
In the first figure, we initialize the environment with 10 prey and measure the
population growth. In the second figure, the environment is initialized with 100
prey and we use lower grass densities to also be able to measure the decay. Since the
measured population sizes are logarithmized, a straight slope indicate exponential
growth and decay. This seems to be an assumption that holds. Each line in fig. 4.5
gives us a datapoint (rprey, x) which is used to fit the linear equation for rprey as
a function of the grass density. The assumption for this demographic response in
the LV model is a linear response. This assumption means that the growth rate
increases linearly with increasing grass density. However, this seems to not hold in
our simulation environment. In fig. 4.7, we note that for fixed x > 20, the growth
rate starts to converge.

In the same way, we measure the growth rate parameters f, g for the predators by
measuring the population growth in environment with fixed prey densities. Here,
rpredator = −f + gy. In fig. 4.6, there seems like the exponential growth assumption
holds with noisy but overall linear slopes of the logarithmized population sizes.
However, even more apparent than for the prey, as can be seen in fig. 4.8, the
growth rate parameter rpredator is not linearly dependant on the prey density. The
data suggest that there are two domains, if y < 20 there is a constant negative
growth rate and for y > 20 there is a constant positive growth rate, while close to
y = 20 there is a quick transition between these two domains. Thus, the LV model
assumption for the demographic response doesn’t hold for these parameters either
in the simulation environment.
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Figure 4.3: The parameter b is the rate per timestep at which a prey eats grass
per available grass in the environment.

Figure 4.4: The parameter e is the rate per timestep at which a predator eats prey
per available prey in the environment.
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Figure 4.5: The growth and decay of prey in the absence of predation and with a
fixed grass density.
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Figure 4.6: The growth and decay of predators with a fixed prey density.

35



4. Results

Figure 4.7: Using the exponential growth rate data from fig. 4.5, a linear equation
for rprey = −c+ dx is fitted.

Figure 4.8: Using the exponential growth rate data from fig. 4.6, a linear equation
for rpredator = −f + gy is fitted.
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4.3 Survival properties

The survival properties of the trained agents are evaluated by comparing them
with random policy agents. In fig. 4.9, an environment with a fixed population
sizes (x = 100, y = 20, z = 20), half of them with a trained policy and the other
half with a random, is simulated. The average lifetime of the agents alive at a
particular time step is measured for the respective agent type. The values in all
coming average lifetime measurements are smoothed with a exponential moving
average. The predators outperform the prey in this environment. The trained
predators converge at around 5000 timesteps. The random policy predators does
not succeed in finding prey and die due to lack of energy. The trained prey performs
better than the random policy prey, but both dies at a rather young age due to
predation. In fig. 4.10, we have removed the predators. Now the trained prey have
mastered the environment and their lifetime grows without tendency to converge at
40000 steps. The random prey does not find any grass and dies due to starvation.
How do the average lifetime changes when the maximum speed vmax is increased?
An increased speed typically means a higher metabolism. This way, there is a
compromise between being able to move more quickly and a higher rate of energy
usage. In fig. 4.11, a minor experiment has been performed where the maximum
speed and metabolism is altered in an environment with a fixed amount of predators,
which has the maximum speed vmax = 5. A prey with a speed of 6 outperforms the
slower prey, even when the metabolism is increased in a equal proportion. It seems
like this speed advantage enables the prey to outrun chasing predators. The fast
prey with a metabolism remaining at 0.2 is however doing better than the fast prey
with the increased metabolism at 0.3. The reason why the average lifetimes are not
all starting at zero is because the agents don’t report the data on every step.
In fig. 4.12, the probability of predation for different speed and metabolism config-
urations are shown. The prey can die in two ways, from starvation or predation.
The probability is found through summation of all deaths from predation divided
by the total number of deaths up until a particular step. The fastest prey with a
high metabolism has the lowest probability of predation.

4.4 The happiness network

An evaluation of the performance of the happiness network as an reward system
is briefly performed. We trained the two animat species with two different reward
functions, the happiness network and another where an extrinsic reward of +1 was
added for the event of eating Eeat and a negative reward of −5 for dying. These
were evaluated on three different fixed population size configurations (x = 100, y =
50, z = 10), (x = 50, y = 50, z = 50), (x = 10, y = 50, z = 100). In the first, the risk
of predation is lower due to a lower predator density. Thus, the prey should come a
long way with only learning to eat grass. In the second, there is a balance between
the two needs. In the third, it is a high predator density. The priority should in
the last be to learn escaping predators. This hypothesis is partly confirmed. In
fig. 4.13, the extrinsic prey outperforms the one using the happiness network. For
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Figure 4.9: Average lifetime of agents alive in an environment with trained and
random policy agents of both species.

Figure 4.10: Average lifetime of agents alive in an environment with trained and
random policy agents in an environment with no predators.
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Figure 4.11: Average lifetime of prey with different maximum speed and
metabolism configurations.

Figure 4.12: The prey can die from starvation or predation. This shows the prob-
ability of dying from predation for different speed and metabolism configurations.
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Figure 4.13: Comparison of the average lifetime during training for a pure extrinsic
reward signal and the happiness network. In this training environment the predator
population is lower than in the other two.

the predators, the extrinsic initially outperforms the happiness, probably due to
the more simple reward signal which enables quicker learning. However, by the
final timestep their lifetime is similar. For the second configuration in fig. 4.14,
the prey which are trained with the happiness network performs better than the
one using the pure extrinsic reward. In this environment, a balance between eating
and escaping predators is needed and the extrinsic prey, which might have a larger
focus on eating grass, has a much greater probability of dying from predation as
can be seen in fig. 4.16. The wolf which only needs to find and eat prey, performs
better with the extrinsic reward. Lastly, for the third configuration fig. 4.15, the
performance of the prey are roughly equal at the final time step. This time, the
death from predation probability is greater for the prey trained with the happiness
network.
In all three training configurations, the lifetime of the prey for the extrinsic reward
system reaches an initial peak and then starts to decrease. This is probably because
the wolf needs more training steps to learn to kill prey since they have a harder task of
hitting moving targets. In the first training configuration this is also apparent for the
prey trained with the happiness network, but not for the other two configurations.
This can either be because the prey trained with happiness is better to escape
predators or because the predators trained with happiness is not equally good at
hunting as their extrinsic counterpart.
The number of training steps differ between the three training environments because
they are trained for a fixed amount of time and not the number of steps, and in
environments with more agents, the time per step is larger.
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Figure 4.14: Comparison of the average lifetime during training for a pure extrinsic
reward signal and the happiness network. In this training environment the predator
population is lower than in the third but larger than in the first.

Figure 4.15: Comparison of the average lifetime during training for a pure extrinsic
reward signal and the happiness network. In this training environment the predator
population is larger than in the other two.
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Figure 4.16: Comparison of cause of death for the prey in the three training
environments.
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Discussion

In this section, we will begin by discussing our findings for the main topic of the the-
sis, three-species predator-prey population dynamics with respect to the LV model
and the parameter response estimations. Then the survival properties of the trained
agents is discussed and how this could have been further investigated. The compar-
ison of the happiness network with an extrinsic reward system will be considered.
A section about RL in simulated ecosystems in general and the design of animats is
included in the next section. The chapter ends with a brief discussion about ethical
considerations and suggestions of future research.

5.1 Lotka Volterra dynamics
The LV model is a simplified model based on several unrealistic assumptions. Real
world data, such as that shown in fig. 2.5, only exhibit accordance with the model to
some extent. Therefore, a reflection during this thesis work has been what the actual
ground truth is that we strive for in the efforts of trying to obtain realistic popu-
lation dynamics. Previous work with simulated ecosystems and RL have focused
on obtaining LV cyclic dynamics for two-species systems. Thus, having a similar
approach for a three-species system seemed like a natural extension for this thesis.
The result in fig. 4.1 shows typical LV cycles, which is significantly different than
that obtained when using random policy agents in fig. 4.2. This indicates that the
intelligence of the agents gives rise to dynamics that are more in accordance with the
LV model. However, we can not rule out that the random policy agent simulation
would give rise to cyclic dynamics under other simulation parameter choices.
In table 4.1, the amplitude and time period for each species in the four simulation
experiments is shown. For each experiment, the period of each species is similar,
except for the predators in the second simulation. The amplitudes varies slightly
more in each experiment, and has a high variation within each experiment. This
indicates that the amplitude of the peaks are more affected by stochasticity than
the time period.
When estimating the parameters and their responses to changing population densi-
ties, some interesting result are being found which challenges the LV assumptions.
Firstly, in fig. 4.4, the simulation measurements indicates that the parameter e,
which is the probability for a particular prey to be eaten per time step per predator
in the environment, is not constant for different prey densities. There seems like
this probability is lower in high prey density environments. In other words, a prey
is less likely to be eaten by a predator if there are many other prey. This is what the
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more realistic Holling Type II functional response also expresses and makes sense
from a real world ecosystem perspective. Typically, this is explained to happen be-
cause the time for predators to search prey decreases with increasing prey density,
but the time for processing the prey (killing, eating) remains constant. Thus, in
high prey density environments, most of the time of the predators is used for the
processing, and the predation rate converges. I don’t think that this is the primary
reason for the observed response in our simulation environment though, as the pro-
cessing occurs instantly. Rather, I think it is a result of the predators not having
infinite appetite. When they feel full, they will not expect an equally large reward
from killing prey and may have a smaller drive for hunting. In other words, a fixed
predator population will only need to hunt an amount of prey such that its need for
food is fulfilled. This is a behavior that the trained predators in the environment
seems to exhibit but which the LV model doesn’t assume. However, this behavior is
not apparent for the prey eating rate parameter b from figure fig. 4.3. Why a similar
eating behavior is not observed for the prey is not obvious, possibly it has something
to do with the preys need to learn prioritizing eating and escaping predators and
that this interferes with the learning of not needing to eat when already full.
Another interesting insight from the parameter estimation is the numerical responses
for the growth and death parameters c, d and f, g of the prey and predators respec-
tively. The assumption of the LV model is that the rate of population growth
increases linearly with the amount of available food (grass and prey). In fig. 4.7 and
fig. 4.8 this doesn’t seem to be the case for our simulations. Rather, there seems
that the growth rate converges at a food population of around 20 for both the prey
and the predators. This also seems like a reasonable response. If a population has
a sufficient amount of food available such that none starves, the population will not
grow quicker if it is provided with additional food. This is the dynamics that our
simulations seem to exhibit.
In the efforts of making better LV model variations, many more complex functional
and numerical responses have been suggested. However, there is a trade-off between
model complexity and simplicity. This kind of simulation may offer a natural way to
explore responses in more complex ecosystems since real world data of the requested
type may be limited. Through better response estimation, one might be able to
model ecosystems more accurately. Ecosystem simulations like this might also be an
alternative to directly simulate population dynamics without a need for constructing
a mathematical model.

5.2 Survival properties
In fig. 4.9 and fig. 4.10, it is very clear that the trained animats have a much longer
expected lifetime than the random agents. The first of the two figures shows that at
a predator population of 20, both the trained and random policy prey will struggle
and die from predation at a young age. The lifetime of the predators converges to
around 5000 steps. The reason why the average lifetime converges and don’t seem
to grow without limit like the trained prey do in fig. 4.10, is probably because the
prey density is too low. This makes it possible for predators to not find prey since
they only partially observe the environment. This is not the case in fig. 4.10 since
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the grass density is higher, and the prey seem to always be able to find grass before
they starve.
Increasing the maximum speed of the prey increases its expected lifetime for this
particular population density configuration. A higher maximum speed enables the
prey to escape chasing predators, and as can be seen in fig. 4.12, death from predation
is the most probable death cause. However, it seems to also be useful for finding
grass. Comparing the slowest and fastest prey with equal metabolism, we can see
that their death from predation probability is equal while the life expectancy of the
later is significantly longer. This way, the number of deaths from both starvation
and predation is lower for the faster predator. For the fastest prey with a metabolism
of 0.02 and 0.03 respectively, the probability of dying from starvation is larger for
the later, this is an expected result.
It would be interesting to make a more thorough analysis of the survival properties
for different animat and ecosystem configurations. In real life animats, there is a
compromise between moving quickly and usage of energy. The actual relationships
between energy consumption and movement have not been studied for this analysis.
The optimal configuration is probably depending on the environment in which the
animal lives. These kinds of simulations may be able to give additional insights into
questions like this.
Comparing the trained agents with random policy agents could have been further
investigated in several ways. For example, a rule based agent which moved greedily
towards the closest food object. Or agents trained with other RL algorithms through
other MARL schemes. One could also compare agents with different sensors and
reward systems, the later which is done briefly in section 4.4. An issue for these
comparisons though is how to make fair comparisons. The comparison of lifetime
for a particular agent should ensure that the environment in which it lives should be
equal for all agents. And the conclusions made from such an experiment is maybe
not valid for environments that differs from the measured one. The population
dynamics simulations are non-stationary with changing population densities. Thus,
the optimal policy may be different at different stages of the simulation and the
analysis of which policy is the best is thus a time dependent question. Changing the
physical configuration of an animat, such as increasing its speed or sensory range,
changes what the animat can expect to happen given an action under a particular
observation. Therefore, properties of the animat can’t be perturbed too far away
from the setup at which it has been trained without an expected loss of performance.

5.3 The happiness network
The main argument for the happiness network is the idea that the reward is great-
est when actions are selected which improves the homeostatic variables that are
furthest from their optimal values. This way, the animat learns to prioritize ac-
tions depending on its internal state. In comparison, a simple reward signal such
as always rewarding eating is probably good to ensure that the energy homeostatic
variable is fulfilled, but when multiple different homeostatic variables needs to be
fulfilled, something more sophisticated might be useful. The performance of the
happiness network was compared with a simple extrinsic reward system. For the
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prey in the high grass density environment with few predators, the extrinsic reward
performed very well, as expected. When the predator density was increased and the
prey needed to both escape predators and eat grass, the happiness network yielded
prey that survived the longest. This difference was not as large when the predator
density was further increased. The reason for this might be that focusing on only
escaping predators might be the best priority here, and the extrinsic trained prey
learned to only focusing on this due to their −5 reward for death. The happiness net-
work maybe instead learned that when the prey was hungry, the most urgent threat
was from starvation and ignored the predators to some extent, which decreased the
lifetime since they were actually the greatest threat.
The advantages of the happiness network are not really evaluated in this thesis
due to using animats with only one homeostatic variable. Thus, the usage of it for
optimal performance in this particular environment may be argued against. Further,
the happiness network section 2.3.2 consists of both a response for the homeostatic
variables which could be different for different variables, as well as a response to
the sensory observation. And both responses includes different weights which may
be crucial to obtain a optimal policy. Both of which are not tuned for optimal
performance due to the complexity of training a MARL system, but rather chosen
through reasoning. Another master thesis in our research group had the design of
an happiness network as their primary topic.

5.4 Animats and ecosystem simulations
Even though the animats and the ecosystem simulation in this thesis are more com-
plex than many previous ecosystem simulators, it is only in its infancy when it comes
to modelling real world ecosystems. However, introducing additional homeostatic
variables, sensory inputs, environmental complexity, etc. is not a far leap and it is
possible that animats can be trained to survive in much more complex environments.
After working with this thesis, it is our belief that in order to obtain intelligent be-
havior in more complex ecosystems, an appropriate reward system design is crucial.
This reward system needs to ensure that the desired policy (the one which resembles
real world animal behavior), is the one which maximizes the discounted cumulative
reward. This seems to be a harder task than one might think. If the reward is
too great for some subtask of the desired behavior, the animat learns to exploit
this. For example, if the weights for happiness from smell is too great, it may learn
that chasing good smells should be the primary goal, which is not necessarily the
best behavior for survival. Another example, if the negative reward for the smell
of predators are too great, the prey may only focus on avoiding predators and ig-
nore their need for eating. Vice versa if the reward for fulfilling the homeostatic
needs is too great, it may not prioritize escaping predators. When multiple home-
ostatic variables are introduced, this gets even more complex. Which homeostatic
variable is most in need of being fulfilled now and to what extent of doing so does
the environment currently provides? How to design a reward system which enable
appropriate learning is not a straight forward task, but luckily, there are real-world
animals to look for answers and this is what has been done in this thesis by intro-
ducing the happiness network. Another possibility is to use evolutionary tactics to
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find happiness networks which yield animats with the best survival properties.
Reproduction is another concept that needs to be implemented to the ecosystems.
In this thesis, asexual reproduction was used, which is not very realistic in a agent
based ecosystem. More realistic reproduction was a topic of another master thesis
in our research group. Here, reproduction through physical interaction and the
physical growth of animats from infants to adults were implemented. The growth
of grass was also done in a more realistic manner and eating grass done by prey by
applying its eating action to it and multiple prey could share a grass resource until
it was consumed. Similarly, when the predators killed a prey, it left a meat object
behind which multiple predators could apply its eating action to until the meat
source was consumed. They also used genetic algorithms to simulate evolution of
physical properties.
Another feasible ideas for predator-prey ecosystems is to introduce fighting, which
was done briefly by [5]. Terrain dependent movement and obstacles, marine en-
vironments, seasonal variations, communication of observations, etc. are all ideas
that can be implemented in a rather straight forward way in the Unity environment.
Whether training animats in those are a straight forward task or not is however a
question which is harder to answer. This is one of the most interesting parts of
simulated ecosystems of this kind, you can incrementally make them more realistic
and at some point you might actually have agent based simulations where both the
animats and the environment resemble their real-world counterpart.

5.5 Limitations
Using Unity as a simulation environment gives many advantages, such as an existing
framework for building the environment in 3D, utilizing a physics engine and a con-
tinuous space where most previous work has been done in a gridworld. This enables
qualitative analysis of the animat behaviors. However, it also has some limitations
such as the speed of running simulations in comparison with less rich simulation
environments. This way, exploring the simulation environment parameter space is
very computationally demanding. Further, increasing the simulation environment
size, which might yield less stochasticity in the population dynamics is not feasi-
ble since the speed decreases further and Unity seemed to be limited to deal with
around 500 alive agents simultaneously, which is not a lot for population dynamics
experiments.
The LV model has been studied in detail for a long time. Searching for the topic on
google scholar yield 70 000 hits. Thus, finding relevant work and what has already
been done is challenging. However, when it comes to LV in connection with RL,
which is a small subset of all the work that have been put into analysing the LV
model, we believe that most relevant work have been considered.

5.6 Ethics
This type of simulations might equally well be used to simulate human behavior in
different environments. If the simulations at some point become realistic enough,
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which they are far from being right now, there might be concerns as to how the sim-
ulations can be used for ill-intended purposes. Such as exposing realistic simulated
humans to some scenario of interest in the simulation environment and be able to
more accurately predict the outcome. Similarly, one might be able to train robots to
do harm in the simulated environment and then launch them into the corresponding
real-world ecosystem.
Another concern may be if these types of simulations are used at an too early stage
to predict the outcome when one alters an ecosystem, when the simulation is not yet
capable of doing so. An overly optimistic belief regarding the current capabilities
of artificial intelligence is not uncommon today and I consider this scenario as a
threat that is not unlikely to happen. Using ecosystem simulations that might be ill-
intended and biased or with good intentions but inaccurate to motivate interventions
to the environment which might have a negative impact.

5.7 Future research
Many ideas regarding how the animats and the ecosystem can be more realistic was
brought up in section 5.4. As mentioned there, it is an seemingly unbounded number
of real-world inspired ideas that can be introduced to the simulated ecosystems.
However, the major problem is to train intelligent animats in increasingly complex
environments. For this, there might exist better learning algorithms than that of
this thesis. Model-based RL has seen a recent upswing and might be a promising
direction to explore. As said in section 5.3, an appropriate design of reward system
is crucial and becomes a more complex task as the animats have multiple objectives.
How different sensory inputs complement each other, how they can be pre-processed
for easier interpretation and their relation to RL may also be a topic for future
research. Real-world animals has a large number of different sensory inputs which
all are used to improve the survival properties of the animal.
Specifically for the studies of LV, there are several interesting further research ques-
tions. A similar study for the competitive LV model, where several animals compete
over common resources of food, may be performed. Estimations of the functional
and numerical responses of the parameters seems feasible in simulated ecosystems
like this. Using it to estimate even more complex functional responses and their re-
lationships with the current state-of-the-art mathematical models may be a future
research topic.
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In this work, we set out to investigate the population dynamics of a three-species
predator-prey system with agents trained with multi agent reinforcement learning
and compare the dynamics with the three-species Lotka Volterra predator-prey equa-
tions. It was shown that the dynamics of the trained agents exhibit the characteristic
Lotka Volterra cycles when random policy agents did not. The functional and nu-
merical responses of the parameters in the Lotka Volterra model was analysed and
it was found that the responses in the simulated ecosystems did not fulfill the as-
sumptions of the model, but rather showed other responses that could be argued to
be more realistic.
The survival properties of the animats were analysed through comparison with ran-
dom policy agents and by comparison of different physical configurations. It was
shown that increasing the movement speed of the prey gave a longer expected life-
time, even when the rate of energy consumption (metabolism), was increased at an
equal proportion. These type of simulations was argued to be useful for understand-
ing the adaptation of properties in real-world animals.
A reward system which incorporated both the external and internal state of the
animat was introduced as the happiness network. This reward system was shown
to perform better in some environments than a simple reward system with positive
reward for eating food and a negative for dying.
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